Perturbation theory for Maxwell's equations with shifting material boundaries.
نویسندگان
چکیده
Perturbation theory permits the analytic study of small changes on known solutions, and is especially useful in electromagnetism for understanding weak interactions and imperfections. Standard perturbation-theory techniques, however, have difficulties when applied to Maxwell's equations for small shifts in dielectric interfaces (especially in high-index-contrast, three-dimensional systems) due to the discontinuous field boundary conditions--in fact, the usual methods fail even to predict the lowest-order behavior. By considering a sharp boundary as a limit of anisotropically smoothed systems, we are able to derive a correct first-order perturbation theory and mode-coupling constants, involving only surface integrals of the unperturbed fields over the perturbed interface. In addition, we discuss further considerations that arise for higher-order perturbative methods in electromagnetism.
منابع مشابه
Dielectric profile variations in high-index-contrast waveguides, coupled mode theory, and perturbation expansions.
Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electromagnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fails when appli...
متن کاملGeometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates.
Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when appli...
متن کاملON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کاملNonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory
In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...
متن کاملNonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique
In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 65 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2002